

Developing and Evaluating a New Metric for ABS Frame Quality Assessment

Stephanie Zimmer and Ashley Amaya

www.rti.org

- CDS used as foundation for sampling frame for an address-based sample (ABS)
- ABS frame has high coverage nationally, but some areas have undercoverage
- Many surveys use frame enhancement in segments with low estimated net coverage
- We argue net coverage may not be best metric to identify segments to enhance and have developed a metric to indicate potential bias in estimates

Within Segment Coverage Error

Segment 1		Segment 2		Total	
N _{frame} :	5	N _{frame} :	5	N _{frame} :	10
N _{pop} :	6	N _{pop} :	10	N _{pop} :	16
Coverage Rate:	83.3%	Coverage Rate:	50.0%	Coverage Rate:	62.5%
Risk of Bias:	100%	Risk of Bias:	0.0%		
Red _{NoEnhance} :	0.0%	Red _{NoEnhance} :	40.0%	Red _{NoEnhance} :	20.0%
				Red _{NoEnhanceWT} :	25.0%
Red _{Current} :	0.0%	Red _{Current} :	40.0%	Red _{Current} :	26.7%
				Red _{CurrentWT} :	25.0%
Red _{New} :	16.7%	Red _{New} :	40.0%	Red _{New} :	27.3%
				Red _{NewWT} :	31.25%
Red _{True} :	16.7%	Red _{True} :	40.0%	Red _{True} :	31.25%

- 1. Rank segments by risk of bias due to coverage
- 2. Use enhance listing in segments with highest risk of bias this addresses within segment coverage error
- 3. Add weighting step to address undercoverage at segment level
- 4. After data collection, post-stratify the coverage adjusted weights

Coverage Bias Risk Index (CBRI): a metric to identify segments at high risk of coverage error

- 1. For each segment, estimate coverage rate for a subgroup (e.g. those with less than HS education or renters) using a model
- 2. Find estimate of proportion of the population belonging to each subgroup from reliable source such as ACS
- 3. Given the coverage rate and population distribution, estimate the percent of each subgroup that will be covered
- 4. Calculate difference between estimate in step 2 and step 3
- 5. These differences are combined using an average of absolute values to create the CBRI

Adjust weights for coverage

- Design weight is defined as the inverse of probability of selection from the sampling frame used
- Then adjust this weight for coverage as follows:

$$w_{covadj,i} = w_{design,i} * \frac{N_{pop}}{N_{frame}}$$

Comparing ranking of coverage rates to CBRI

Comparing coverage rates to CBRI for decision making

- Generated a population based on ACS and assigned coverage propensity for each housing unit based on model
- Ranked segments according to CBRI and coverage
- Segments with low coverage were "enhanced" and simulation considered them having 100% coverage, segments with high CBRI were "enhanced" and simulation considered them having 100% coverage
- Sampled from frames with varying coverage levels varied whether CBRI or coverage used for decision making, whether weight was adjusted for coverage, and whether post-stratification was used.
- 12 outcomes were simulated and bias estimated

Simulation Results: Ranking Segments

Simulation Results: Modified Coverage Weight

Coverage Weight Adjustment 🕶 No 🕶 Yes

Simulation Results: Post-Stratification

12

Simulation Results

Simulation results

- No significant difference found by using CBRI compared to using coverage rate
- No significant difference from using coverage weighting adjustment
- Post-stratification reduced bias for some variables, namely citizenship, birth place, and insurance status. Post-stratification variables included Census division, race/ethnicity, and sex only

Conclusion

- This new ranking method does not out-perform standard method of using net coverage rate for decision making
- Better models may improve the method needs ground truth data which is expensive
- Weighting for undercoverage does not impact bias of estimates

Stephanie Zimmer

Research Statistician sazimmer@rti.org